Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 24, 2026
-
The LHC produces an intense beam of highly energetic neutrinos of all three flavors in the forward direction, and the Forward Physics Facility (FPF) has been proposed to house a suite of experiments taking advantage of this opportunity. In this study, we investigate the FPF’s potential to probe the neutrino electromagnetic properties, including neutrino millicharge, magnetic moment, and charge radius. We find that, due to the large flux of tau neutrinos at the LHC, the FPF detectors will be able to provide more sensitive constraints on the tau neutrino magnetic moment and millicharge than previous measurements at DONUT, by searching for excess in low recoil energy electron scattering events. We also find that, by precisely measuring the rate of neutral current deep inelastic scattering events, the FPF detectors have the potential to obtain the strongest experimental bounds on the neutrino charge radius for the electron neutrino, and one of the leading bounds for the muon neutrino flavor. The same signature could also be used to measure the weak mixing angle, and we estimate that could be measured to about 3% precision at a scale , shedding new light on the longstanding NuTeV anomaly. Published by the American Physical Society2025more » « less
-
A<sc>bstract</sc> Proton-proton collisions at energy-frontier facilities produce an intense flux of high-energy light particles, including neutrinos, in the forward direction. At the LHC, these particles are currently being studied with the far-forward experiments FASER/FASERνand SND@LHC, while new dedicated experiments have been proposed in the context of a Forward Physics Facility (FPF) operating at the HL-LHC. Here we present a first quantitative exploration of the reach for neutrino, QCD, and BSM physics of far-forward experiments integrated within the proposed Future Circular Collider (FCC) project as part of its proton-proton collision program (FCC-hh) at$$ \sqrt{s} $$ ≃ 100 TeV. We find that 109electron/muon neutrinos and 107tau neutrinos could be detected, an increase of several orders of magnitude compared to (HL-)LHC yields. We study the impact of neutrino DIS measurements at the FPF@FCC to constrain the unpolarised and spin partonic structure of the nucleon and assess their sensitivity to nuclear dynamics down tox∼ 10−9with neutrinos produced in proton-lead collisions. We demonstrate that the FPF@FCC could measure the neutrino charge radius forνeandνμand reach down to five times the SM value forντ. We fingerprint the BSM sensitivity of the FPF@FCC for a variety of models, including dark Higgs bosons, relaxion-type scenarios, quirks, and millicharged particles, finding that these experiments would be able to discover LLPs with masses as large as 50 GeV and couplings as small as 10−8, and quirks with masses up to 10 TeV. Our study highlights the remarkable opportunities made possible by integrating far-forward experiments into the FCC project, and it provides new motivation for the FPF at the HL-LHC as an essential precedent to optimize the forward physics experiments that will enable the FCC to achieve its full physics potential.more » « less
-
Heavy neutral leptons (HNLs) are motivated by attempts to explain neutrino masses and dark matter. If their masses are in the MeV to several GeV range, HNLs are light enough to be copiously produced at collider and accelerator facilities, but also heavy enough to decay to visible particles on length scales that can be observed in particle detectors. Previous studies evaluating the sensitivities of experiments have often focused on simple but not particularly well-motivated models in which the HNL mixes with only one active neutrino flavor. In this work, we accurately simulate models for HNL masses between 100 MeV and 10 GeV and arbitrary couplings to , , and leptons. We include over 150 HNL production channels and over 100 HNL decay modes, including all of the processes that can be dominant in some region of the general parameter space. The result is , a user-friendly, fast, and flexible library to compute the properties of HNL models. As examples, we implement to extend the package to evaluate the prospects for HNL discovery at forward LHC experiments. We present sensitivity reaches for FASER and FASER2 in five benchmark scenarios with coupling ratios , , , , and , where the latter two have not been studied previously. Comparing these to current constraints, we identify regions of parameter space with significant discovery prospects. Published by the American Physical Society2024more » « less
-
Abstract The recent direct detection of neutrinos at the LHC has opened a new window on high-energy particle physics and highlighted the potential of forward physics for groundbreaking discoveries. In the last year, the physics case for forward physics has continued to grow, and there has been extensive work on defining the Forward Physics Facility and its experiments to realize this physics potential in a timely and cost-effective manner. Following a 2-page Executive Summary, we first present the status of the FPF, beginning with the FPF’s unique potential to shed light on dark matter, new particles, neutrino physics, QCD, and astroparticle physics. We then summarize the current designs for the Facility and its experiments, FASER2, FASER$$\nu $$ 2, FORMOSA, and FLArE.more » « less
-
This Letter presents the measurement of the energy-dependent neutrino-nucleon cross section in tungsten and the differential flux of muon neutrinos and antineutrinos. The analysis is performed using proton-proton collision data at a center-of-mass energy of 13.6 TeV and corresponding to an integrated luminosity of . Using the active electronic components of the FASER detector, charged current muon neutrino interaction events are identified, with backgrounds from other processes subtracted. We unfold the neutrino events into a fiducial volume corresponding to the sensitive regions of the FASER detector and interpret the results in two ways: (i) we use the expected neutrino flux to measure the cross section, and (ii) we use the predicted cross section to measure the neutrino flux. Both results are presented in six bins of neutrino energy, achieving the first differential measurement in the TeV range. The observed distributions align with standard model predictions. Using this differential data, we extract the contributions of neutrinos from pion and kaon decays. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
An official website of the United States government
